3D-принтеры FFF/FDM (#2)

Как они устроены, и как с ними работать

О чём сегодня пойдёт речь

Основы

- 1. Что такое FFF/FDM
- 2. Из чего состоит 3D-принтер
- 3. С чего всё начиналось
- 4. Варианты под разные бюджеты
- 5. Немного про Picaso 3D Designer

Начинаем печатать

- A. Начало работы (на примере Flashforge Adventurer 5M Pro
- В. Про пластики
- С. Слайсеры: Cura, Prusa, Orca

Изучаем слайсеры

- 1) Разбираемся в структуре модели
- 2) Разбираемся в параметрах
- 3) Вспомогательные структуры

Разбираем проблемы и их решения

- I. Адгезия
- II. Влажность
- III. Образование паутинок
- IV. Неоптимальная экструзия

Что такое FDM/FFF?

- **FDM** (Fused Deposition Modeling) моделирование методом послойного наплавления (в данном случае пластика с различными присадками) это технология компании Stratasys, запатентованная в 1989г.
- **FFF** (Fused Filament Fabrication) послойное наплавление филамента было придумано для обхода патента на FDM сотрудниками проекта RepRap в 2005 году. В 2009 году срок действия патента на FDM истёк, после чего 3D-принтеры резко подешевели и начали широко распространяться на потребительском рынке.
- Суть обеих технологий проста: материал подаётся в экструдер, где нагревается и расплавляется. Экструдер выдавливает горячий материал на подогретый стол через сопло малого диаметра. Такая печать может выполняться и на открытой среде, но лучше иметь закрытую камеру с системой терморегуляции это улучшит адгезию, защитит материал от внешней среды и упростит контроль режима работы и свойств изделия.
- ❖ Собственно, наличие закрытой термокамеры это и есть ключевой параметр, отличающий FDM-принтеры от FFF.
- ❖ Также FFF-принтеры используют "обычные" пластики: PLA, ABS, PETG, тогда как FDM могут работать с более экзотическими: нейлоном, TPU, PVA и др.

Из чего состоит 3D-принтер

- 1. Алюминиевый каркас
- 2. Направляющие экструдера
- 3. Шаговый двигатель по Ү
- 4. Шаговый двигатель по Х
- 5. Экструдер
- 6. Кровать (снизу нагревательный элемент + сверху поверхность для печати)
- 7. Крепление филамента
- 8. Сенсорный дисплей
- Блок питания
 - ❖ У более продвинутых моделей имеется закрытая камера с вентиляцией и терморегуляцией

Из чего состоит экструдер

- 1. Направляющие по Х
- 2. Подъёмный механизм по Y
- 3. Корпус
- 4. Шаговый двигатель Е
- 5. Радиатор с вентилятором охлаждения нагревателя
- 6. Вентилятор охлаждения детали
- 7. Нагревательный элемент и сопло
- 8. Приводной ремень

Из чего состоит экструдер

- 1. Нить филамента
- 2. Шаговый двигатель экструзии
- 3. Зубчатое колесо и прижимной ролик для проталкивания нити
- 4. Медный/алюминиевый радиатор
- 5. Керамический нагреватель
- 6. Латунное/стальное сопло
- 7. Вентилятор

Тип подачи филамента: Боуден или «директ»

Система экструзии Боудена

- Крепится на корпусе принтера;
- Филамент подаётся в экструдер через гибкую тефлоновую трубку.

Плюсы:

- □ Меньше вес печатающей головки;
- Выше скорость;
- □ Меньше шум и вибрации;
- □ Проще и дешевле обслуживать.

Минусы:

- Выше инерционность (время отклика);
- Ограниченность по выбору материалов.

Прямая система подачи («директ»)

- Находится непосредственно в экструдере;
- Проталкивает нить в нагреватель.

Плюсы:

- □ «Всеядность» по филаментам;
- □ Более точное управление подачей/втягиванием нити (ретрактом);
- □ Более качественная экструзия;

Минусы:

- > Сильнее влияние вибраций на печать;
- Сложность в обслуживании.

Про сопла

Стандартные диаметры: **0.2 мм**; **0.3 мм**; **0.4 мм**; **0.5 мм**; **0.6 мм**; **0.8 мм**; **1.0 мм**

- Больше диаметр сильнее экструзия, соответственно, выше скорость печати.
- Но, выше скорость печати сильнее вибрации, следовательно, ниже качество.
- Сопла с большим диаметром необходимы при печати пластиками с наполнителями (например, с древесными опилками (Wood) или углеродными волокнами (Carbon Fiber))

0.2mm 0.3mm 0.4mm 0.5mm 0.6mm 0.8mm 1.0mm

Диаметр обычно выбит на самом сопле

RepRap – с чего всё начиналось

Prusa i3 RepRap – привет из 2012

- **.** Стоил около 15.000 руб.
- Поставлялся в полностью разобранном виде
- Корпус собирается из плоских деталей, вырезанных из оргстекла
- Держатели шаговых двигателей напечатаны на таком же принтере
- Печатающая поверхность обычное стекло. Крепится к нагревателю канцелярскими прищепками
- Приводной ремень отмеряешь, отрезаешь и натягиваешь сам
- Прошиваешь через Arduino Studio

Хочу в 3D-печать. Что выбрать из дешёвого?

Creality Ender-3

от 15.000 руб.

- Самый лёгкий вход в сферу 3D-печати
- Боуден экструдер
- Нужно собирать самому

Anycubic Kobra 2

от 20.000 руб.

- Если хочется печатать быстрее
- Директ экструдер
- Тоже нужно собирать самому

Elegoo Neptune 3 Pro

от 17.000 руб.

- Небыстрый, но живучий, ремонтопригодный и улучшаемый
- Директ экструдер
- Минимум самосборки

Насколько сложно собрать?

Creality Ender-3

- Внешний вид и комплект поставки
- Кровать уже собрана с завода
- Есть инструмент

Работы на 40 минут по инструкции

Вот так крепится экструдер

Хочу в 3D-печать. Есть немножко лишних денег

Creality K1C

Flying Bear Ghost 6

Flashforge AD5M Pro

от 40.000 руб.

- Высокая скорость печати
- ➤ Поддержка "сложных" пластиков (Carbon, Wood, абразивы)
- Камера с ИИ для слежения за печатью
- > Собственный слайсер

от 40.000 руб.

- Продуманная система термоконтроля
- > Полностью собран
- Надёжный экструдер, подходящий для твёрдых материалов

от 42.000 руб.

- Быстросъёмный и заменяемый хот-энд
- Высокая скорость печати
- > Система фильтрации воздуха
- > Наличие камеры и подсветки

Хочу в 3D-печать. Shut up and take my money!

Bambu Lab X1 Carbon Combo

Raise3D E2

Picaso 3D Designer X PRO S2

от 200.000 руб.

- Автоматическая система подачи материалов
- > Качество из коробки
- Высокая скорость
- Куча датчиков и лидар
- > Собственный слайсер

от 380.000 руб.

- 2 независимых экструдера
- Большая область печати
- ➤ Высокое качество
- Дружелюбность к пользователю
- Своя экосистема

от 550.000 руб.

- Поддержи отечественного производителя!
- 2 хотэнда на 430°С с быстрым переключением между материалами
- Внутреннее размещение филамента

Почему в первый раз не стоит покупать б/у

3D принтер flashforge adventurer 5m

32 660 P O

35-500-P -8%

Поставка от 1 лня

3D принтер Ender 3 V3 КЕ (новый) 27 000 P

 Парнас ± 6-10 мин. Лоставка от 1 лня

3D принтер Voron v2.4 r2 250x250

76 500 P 6

85-000-P -10%

Петроградская ± до 5 мин.

и правильно работающий 3D-принтер – две большие разницы! С чем можно столкнуться Например:

Работающий 3D-принтер

- Перегрел экструдер, погнул направляющие, полез править прошивку без бэкапа – как результат, качественной печати можно не ждать;
- Механический износ (после 20.000 часов печати);
- Умирающий нагреватель (не греется до нужной температуры или не держит температуру);
- Банальный "развод".

3D принтер Elegoo neptune 4 (klipper)

27 550 P 0

29 000 P -5%

Доставка от 1 дня

3D принтер FlyingBear reborn2 20 000 ₽

Площадь А. Невского II ★ 16-20 мин.

○ 3D принтер 10 000 ₽ 100

> Доставка от 1 дня

Немного o Picaso Designer (1 поколения)

Экструдер с двумя хотэндами. Переключается хорошо. Но 1 нагреватель оказался полумёртвым. Цена нового — 15.000 руб.

Острые края на корпусе? А ты не хватайся. Зато металлический.

Контроллер может работать, а может зависнуть. Карты памяти может читать, а может не читать.

- Обычное стекло. Чтобы его снять, в комплекте с принтером идёт столярная стамеска.
- А чтобы детали при печати не срывались, в комплекте идёт баллончик лака для волос.

Немного o Picaso Designer (1 поколения)

Сегодня, пожалуй, все производители принтеров предоставляют "однокнопочные" программы для подготовки задания (слайсинга) и отправки его на принтер. И отечественная компания Picaso 3D не исключение

- Чтобы получить ключ активации принтера, надо заполнить форму.
- Программа отправит эту форму на email техподдержки.
- В ответ сотрудник техподдержки пришлёт ключ ("в течение 1 рабочего дня").
- Но если программу закрыть (или она вылетит), то заявку придётся заполнять заново...

Вспомним, что нужно для печати

- □ Подготовить 3D-модель (полигональную или твердотельную CAD не важно);
- □ Сконвертировать модель в полигональный формат STL;

> Загрузить STL-файл в программу слайсер для нарезки на слои;

- Настроить параметры материала, принтера и нарезки;
- Сформировать G-Code и отправить его на принтер (с помощью Wi-Fi, LAN, USB или microSD).

Включаем принтер, запускаем программу

❖ У Flashforge тоже есть своя программа для "однокнопочной" печати — Flash Print

X

Включаем принтер, запускаем программу

❖ Теперь можно добавить деталь из STL файла.

Размещаем модель, режем на слои

❖ После чего запустить нарезку, указав профиль для вашего пластика (PLA или PETG).

Соединиться с принтером

Можно посмотреть модель по слоям

Настройка нарезки

На самом деле тут тоже достаточно много параметров, но по умолчанию они все скрыты. Программа использует готовые профили от производителя.

Структура модели после нарезки

Модель состоит из множества слоёв. Справа показан машинный G-код – это команды управления вращением шаговых двигателей.

Структура модели после нарезки

- Заполнение (Sparse Infill) несплошное заполнение внутреннего объёма модели.
- Сплошная заливка (Solid Fill) заливка внутренних полостей детали сплошными линиями.
- Мост (Bridge) слой пластика, соединяющий два элемента, между которыми пустота.
- Внутренняя оболочка (Inner Shell) внутренние стенки детали.
- Внешняя оболочка (Outer Shell) наружные стенки детали.
- Поддержка (Support) вспомогательные столбики или ветви, помогающие при печати консольно висящих элементов (например, П и Г-образных структур).
- Брим (Brim) "юбка" вокруг первого слоя детали, увеличивающая площадь контакта со столом.
- Подложка (Raft) опорная сетчатая структура, типа строительных лесов, на которой сверху будет печататься деталь.
- Черновая башня (Wiping Tower) специальный цилиндр, который печатается рядом с деталью. Нужен для "вытирания соплей" при замене филамента.
- Стена (Wall) наружная оболочка, которая печатается вокруг детали. Используется при печати двумя экструдерами. Защищает деталь от "соплей" второго экструдера.
- Перемещаться (Travel) пути свободного перемещения экструдера
- Втягивание (Retraction) где экструдер будет втягивать нить, чтобы не оставлять "сопли".
- Другие (Others) прочие структуры.

Пластики для начинающих

PLA 1500 руб./кг

- ❖ Самый "простой" и неприхотливый до настроек биопластик
- ❖ Делается из кукурузы, является биоразлагаемым
- ❖ Не токсичен
- Не даёт усадки при печати
 - Невысокая прочность на излом; хрупкий
 - Напечатанная деталь имеет выраженную слоистую структуру
- □ Температура нагревателя: 195 220°C
- □ Температура стола: **45 60°C**

РЕТG 1100 руб./кг

Внешне на катушке нити PLA, ABS, PETG и др. – все выглядят одинаково

- Самый дешевый пластик
- Не токсичен
- ❖ Распечатанные детали имеют более гладкую поверхность
 - Не биоразлагаемый
 - Желательно использовать термокамеру во избежание усадки
 - Очень гигроскопичен, требует просушки
 - Не любит высокие скорости печати
 - Бывает сложно подобрать правильные настройки.
- ☐ Температура нагревателя: 235 255°C
- □ Температура стола: 60 80°C

Разновидности PLA

1800 руб./кг

- ✓ Содержит добавки для печати на высокой скорости
- ✓ Более высокая температура сопла
- **√** Лучшая механическая стойкость

HS (High Speed) LW (Low Weight)

2200 руб./кг

✓ Имеет пористую структуру, соответственно, деталь меньше весит при том же объёме.

Silk

1600 руб./кг

- ✓ Имеет гладкую блестящую структуру
- ✓ Хорошо гнётся, не такой ломкий как обычный PLA

Chameleon

2500 руб./кг

- ✓ Меняет цвет при изменении направления взгляда
- ✓ Может содержать блёстки

- ❖ Если вы хотите получить максимальный контроль над принтером вам нужен полнофункциональный слайсер. В случае с AD5M это Orca Slicer.
- Каждый производитель принтера предоставляет готовые профили для самых ходовых пластиков под какой-нибудь из этих слайсеров.

- Устанавливаем, запускаем
- Создаём аккаунт для поддержки функций отправки заданий и мониторинга через облако.
- Выбираем принтер из списка и указываем диаметр сопла.

• Далее выбираем интересующие нас пластики:

Системные прутки			Пользовательские прутки				
Тип прутка:	☑ Bce ☑ PLA	✓ ABS ✓ TPU	✓ ASA	✓ HIPS ✓ PET	TG ☑ PA-CF		
	☑ PA6-CF ☑ PI	ET-CF PETG-C	SILK	▼ PLA-CF ▼	PPA-CF ☑ PPA-GF		
	PPS-CF P	/A					
Производитель:	☑ Bce ☑ Gene	ric					
Все Очистить в	ocë						
☐ Flashforge ABS B	asic	☐ Flashforge PA	6-CF	✓ FI	ashforge PLA Basic		
☐ Flashforge ASA B	Basic	☐ Flashforge PA	66-CF	□ Fl	ashforge PLA Color Chan		
☐ Flashforge ASA-0	CF	☐ Flashforge PE	T-CF	□ FI	ashforge PLA Galaxy		
☐ Flashforge HIPS		▼ Flashforge PE	TG Basic	□ Fl	ashforge PLA Luminous		
☐ Flashforge HS PE	TG	☐ Flashforge PE	TG Pro	□ FI	ashforge PLA Matte		
✓ Flashforge HS PL	.A	☐ Flashforge PE	TG Transpare	ent 🗆 Fl	ashforge PLA Metal		
☐ Flashforge PA12-	-CF	☐ Flashforge PE	TG-CF	□ Fl	ashforge PLA Pro		

Загружаем профиль для выбранного пластика (берутся с сайта производителя)

- ❖ Orca умеет отправлять задания и мониторить процесс не только в локальной сети, но и через облако.
- Есть мобильное приложение.

Камера внутри принтера покажет, как идёт печать

Пора разбираться в настройках Orca Slicer

Стоит ли однозначно доверять профилям от производителя – не всегда!

одного и того же одного и того же пластика в Огса и

Пора разбираться в настройках Orca Slicer

Стоит ли однозначно доверять профилям от производителя – не всегда!

Вернёмся к настройкам - Качество

❖ Сопло 0.4 мм имеет три пресета качества печати:

Грубый (высота слоя 0.24 мм)

Нормальный (высота слоя 0.2 мм)

Точный (высота слоя 0.12 мм)

Quality	Strength	Speed	Support	Multimat	🔲 При этом толщины линий	
☐ Layer height					настраиваются раздельно для разных	
Layer height		0.2	mm	участков модели.		
First layer height 0.3		mm	Эти параметры берутся из пресета, и их можно не трогать.			
Line wi	dth				.	
Default			0.42	mm or %	По умолчанию	
First lay	/er		0.5	mm or %	Первый слой	
Outer w	/all		0.42	mm or %	Внешняя стенка	
Inner w	all		0.45	mm or %	Внутренняя стенка	
Top sur	face		0.42	mm or %	Верхняя поверхность	
Sparse	infill		0.45	mm or %	Внутреннее разреженное заполнение	
Interna	solid infill		0.42	mm or %	Внутреннее сплошное заполнение	
Suppor	t		0.42	mm or %	Поддержки	

Вернёмся к настройкам - Прочность

Прочность зависит от процента и паттерна заполнения детали пластиком

□ Самый важный параметр тут — **Sparse Infill density** — плотность разреженного заполнения. По умолчанию обычно это 15-25%

Вернёмся к настройкам - Скорость

Всегда хочется печатать побыстрее

Вернёмся к настройкам - Поддержки

❖ Настройки печати поддержек и других суперструктур

1. Плохая адгезия

□ Адгезия – это слипание слоёв пластика. В контексте 3D-печати она бывает двух видов:

Адгезия первого слоя с кроватью

Проблема – пластик отслаивается при печати.

Причины:

- Низкая температура стола (кровати);
- Слишком высокая скорость печати 1 слоя;
- Неверная настройка высоты сопла над кроватью;
- Гладкая поверхность кровати;
- Сквозняк; перепад температур.

Адгезия слоёв друг с другом

Проблема – слои не слипаются.

Причины:

- Слишком высокая температура печати;
- Недостаток обдува (пластик не успевает застыть);
- ➤ Сквозняк; перепад температур;
- Слишком большая высота слоя.

1. Плохая адгезия – что же делать?

Для хорошего прилипания к столу:

- І. Поверхность стола должна быть шершавой и, опционально, липкой
- Если стол гладкий, можно использовать специальный синий скотч, клей или даже лак для волос.
- Использовать "юбку" (Brim) это увеличит площадь контакта со столом.

Для хорошего слипания слоёв:

- > Использовать принтер с закрытой камерой;
- Не перегревать пластик;
- Не допускать сквозняков;
- > Снизить скорость, увеличить обдув;
- II. Подогрев стола должен быть равномерный

2. "Слоновья нога"

□ Слоновья нога – это когда нижние слои детали расплющиваются под весом верхних:

Проблема – пластик снизу расплющивается

Причины:

- Перегрев пластика на нижних слоях;
- Давление верхних слоёв;
- Плохая калибровка по оси Z.

- Снизить температуру стола;
- > Снизить температуру первого слоя;
- > Снизить скорость печати первого слоя;
- Откалибровать стол и дистанцию до сопла (Z-offset);
- ▶ Использовать "леса" (Raft);
- Сузить основание детали, добавив фаску (срез по ребру) под 45°.

3. Влажный пластик (особенно актуально для PETG)

□ Если влажность пластика **больше 50%**, то при нагреве в хот-энде внутри нити начинает резко испаряться вода. Это приводит к разрывам нити. Как следствие, появляются "сопли", "прыщи" и "каверны".

□ Если пластик очень влажный, то "взрывы" воды и шипение даже можно услышать. Они способны повредить сопло.

Проблема – слои неровные, в модели дыры, "прыщи" или "ниточки"

Причины:

- Вода испаряется и оставляет в филаменте пустоты;
- Из-за давления воды кусочки филамента "выплёвываются" из сопла.

- Просушить филамент 2 часа при 50-60°С;
- Храните пластик
 в закрытом
 пакете, кладите
 силикатный гель.

3. Появление "паутинок"

□ Из внешней стенки модели (чаще всего с одной стороны) торчат тоненькие ниточки пластика.

Причины:

- 1) Недостаточный **ретракт** (вытягивание пластика из экструдера при холостом перемещении от слоя к слою или между элементами детали);
- 2) Повышенная влажность пластика;
- 3) Слишком высокая температура.

- Просто срезать или прижечь ниточки;
- Увеличить дистанцию ретракта (в мм);
- Увеличить скорость ретракта и подачи;
- Просушить пластик;
- Снизить температуру сопла.

4. Избыточная или недостаточная экструзия

- "Перелив" (чрезмерная подача филамента) проявляется в наплывах, искажении геометрии детали и ребристых горизонтальных поверхностях.
- Нити образуются, когда избыточное количество пластика находит выход при холостом перемещении.

Мало – образуются щели

Нормально

Много – появляются "прыщи"

Причины:

- 1) В сопло подаётся слишком много или слишком мало филамента;
- 2) Сопло может быть забито;
- 3) Неправильно настроена подача.

- Прочистить/заменить сопло;
- ➤ Настроить К-фактор компенсации задержки экструзии при начале движения печатающей головки;
- ➤ Снизить «Maximum Flow Rate» максимальную скорость потока.

Как сделать качественно

- В 3D-печати нет универсального рецепта получения качественной модели. Слишком много нюансов, зависящих от принтера, пластика, температуры, влажности, версии слайсера и т.д.
- □ Общий совет начинать от стандартного профиля, печатать тестовые модели, вносить изменения, снова печатать тестовые модели сравнивать.
- □ Конечно пользоваться качественными расходниками. Дешёвый "ноунейм" пластик может испортить не только деталь, но и сопло экструдера.

Экспериментируйте! Удачных вам принтов!